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Growth model for complex networks with hierarchical and modular structures
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A hierarchical and modular network model is suggested by adding a growth rule along with the preferential
attachment (PA) rule into Motter’s modeling procedure. The proposed model has an increasing number of
vertices but a fixed number of modules and hierarchical levels. The vertices form lowest-level modules which
in turn constitute higher-level modules hierarchically. The creation of connections between two vertices in a
single module or in two different modules of the same level obeys the PA rule. The structural characteristics of
this model are investigated analytically and numerically. The results show that the degree distribution, the
module size distribution, and the clustering function of the model possess a power-law property which is
similar to that in many real-world networks. The model is then used to predict the growth trends of real-world
networks with modular and hierarchical structures. By comparing this model with those real-world networks,
an interesting conclusion is found: that many real-world networks are in their early stages of development, and
when the growth time is large enough, the modules and levels of the networks will be ultimately merged.
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I. INTRODUCTION

In the last few years, considerable efforts have been made
to understand and model complex networks in the real world
[1-4]. A number of complex networks have been investi-
gated and categorized, in which two kinds have gained much
attention due to their popularity in the real world [2-7].

One of the real-world networks which have been well
studied is the scale-free (SF) network [1,4,7,8]. Those com-
plex networks, such as in biological [8], social [4,9], and
technological systems [10], are found to obey the power-law
degree distribution i.e., P(k)~k~” where the degree is the
number of edges connecting to a given vertex. Barabdsi and
Albert (BA) [4] successfully modeled such networks with
the following principle: starting with a small number (m,) of
vertices, adding a new vertex at every time step, and con-
necting it to m(m<my) different vertices which are selected
with a probability linearly proportional to the degree of the
target vertex. Such a selection rule is called the preferential
attachment (PA) rule. Recently, many network models based
on BA have been proposed and the dynamic properties of
them have been explored extensively [1,11].

Another kind of real-world networks which have been
well investigated is characterized by a high degree of clus-
tering [2,11] and modular structure [5,12-24], both of which
can be measured by a local clustering coefficient [2]. The
local clustering coefficient for vertex i with degree k; is de-
fined as C;=2n;/k;(k;—1), where n; is the number of edges
between the k; neighbors of vertex i. A high degree of clus-
tering means that the clustering coefficient C—i.e., the aver-
age of C; over all the vertices—is significantly higher for
these real-world networks than a regular network of similar
size. Furthermore, a network can be considered modular and
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hierarchical when the clustering function C(k), the average
of C; over the vertices with degree k, satisfies the relation-
ship: C(k)~k P and C remains finite for large system size N
[8,13,14,18,22].

The BA model obeys the power-law degree distribution
with y=3, but C(k) is independent of k and C decreases with
N, because the BA model does not contain modules [18].
Recently, Watts et al. [23] and Motter et al. [24] introduced
social network models containing modular and hierarchical
structure, where vertices form modules which are in turn
grouped to become bigger modules hierarchically. Their
models, however, are mainly focused on networks with a
fixed number of vertices and thus without a growing prop-
erty. Ravasz and Barabdsi (RB) introduced a hierarchical
model in a deterministic way [13,14]; furthermore, Iguchi
and Yamada completely analyzed the RB model and re-
moved some flaws in its arguments [25]. Kim et al. [18] and
Noh et al. [19] introduced growing models, where the num-
ber of vertices and modules increases with time. All of the
models in the papers [13,14,18,19] obey the power-law de-
gree distribution.

In this paper, we present a growing network model by
adding the growth rule and the PA rule in the model of Mot-
ter et al. The proposed model is a growth model for complex
systems with a fixed hierarchical and modular structure. And
different from other methods, our approach could also be
considered as a naturally generalized version of the BA
model whose rules are considered to be very common in our
society. The areas where our model can be more naturally
applied are social systems, wide-area network (WAN) rout-
ing networks, large-scale logistic systems, intercontinental
air transportation networks, etc., where the vertices are
people, routers, local warehouse, and local airports, respec-
tively, and the modules of different levels are cities, prov-
inces, countries for social systems, local and regional routing
subnets for WAN routing networks, local and transfer net-
works for logistic systems, local and connecting airlines for
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air transportation networks, and so on [24]. These systems
have fixed hierarchical and modular structures which are all
mainly determined by many geographic factors, but the ver-
tices of them increase very quickly. Our model is designed
according to the above system characteristics and is different
from former studies. For example, the model of Watts et al.
[23] and the model of Motter et al. [24] do not have the
growth property; the RB model [13,14] has totally determin-
istic vertex growth characteristics which are not realistic in
the real world; and in the model of Kim et al. [18] and the
model of Noh et al. [19] both the modules and vertices in-
crease with time. Therefore, these models cannot explain
well the systems mentioned above. In those systems, the cre-
ation of connections between lower-level modules is easier
and more frequent than that at higher levels. For example, in
air transportation systems, opening a local airline is usually
easier and more frequent than opening an intercontinental
airline. In other words, comparing to the rapidly increasing
number of infrastructural components, the upper-level orga-
nizations are much more stable, so the number of the upper-
level organizations can be regarded as constants. In view of
the dynamics of the vertex degrees and the local clustering
coefficients, the proposed model exhibits both the properties
of scale-free and modular structure. The degree distribution
of the proposed model possesses a power-law distribution
with ye[2,3] and the clustering function C(k)~k™#, con-
sistent with most empirical data. We also briefly study the
dynamics of module size which is defined as the number of
members in a module. As the proposed model grows, the
module size distribution shows a power-law distribution like
the network model studied previously [19].

The rest of the paper is organized as follows. In Sec. II,
we introduce the growing network model. The dynamic
properties of the model can be changed by some parameters.
Then analytic results about the dynamics of vertex degree
and module size are provided in Sec. III, and the numerical
simulation is given in Sec. IV. The results from the theoret-
ical analysis and the numerical simulation are very close.
As an application, the proposed model is used in Sec. V to
predict the growth trends of a complex network with modu-
lar and hierarchical structure. Our work is summarized in
Sec. VI.

II. GROWING NETWORK MODEL

In this section we present a growing network model with
fixed modular and hierarchical structure. As is shown in Fig.
1, our model has a treelike structure. At the lowest level (i.e.,
the first level) of the network, there are several groups of
vertices, forming modules of this level. Those modules are in
turn grouped to constitute higher-level modules and so on.
This process continues until at a certain level there is only
one “big” module. This level is defined as the top level of the
network, containing all the information about the network in
a hierarchical way.

To simplify the description, we assume that, at all levels
except the top level, every n module of the Ath level forms a
module of the (h+ 1)th level, where n is independent of A.
Then a network with M levels will contain nM~! lowest-level
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(M-1)th level

The Mth level

FIG. 1. The sketch map of the model with M levels.

modules. The parameters M and n are fixed in our model.

Two stochastic events are considered in our model to
make the network “grow”—i.e., the creation of a new vertex
connected to some other existing vertices and the creation of
a new connection attached between two existing vertices.
According to the hierarchical and modular structure of our
model, these events can be yielded by two kinds of opera-
tions: in-module connection and between-module connec-
tion. With the in-module connection a new vertex may be
created in a module and connected to several vertices in the
same module. With the between-module connection two ver-
tices coming from different modules will be connected.
All the operations are conducted in a random way: the
connection type is determined with a predefined in-module-
connection probability ¢, for the hth-level modules,
h=1,2,...,M, and the vertex selection follows the PA rule.

The whole process of network growing can be described
with the following top-down view. Initially we assume that
there are my fully connected vertices in each lowest-level
module. We set h=M and let Q,, be the currently selected
module in the Ath level in which a network growth operation
will be conducted. Of course Q,, is the sole module at the
top level.

(i) Connection-type selection. For the submodules of
module Q) at the Ath level, the in-module connection type is
selected with the probability ¢,_; or the between-module
connection type is selected with the probability 1—g;_;.

(i1) Module selection. A (h—1)th-level submodule of the
module Q) is selected with a uniform probability if the in-
module connection type is chosen or two (h—1)th-level sub-
module of the module Q) are selected also with a uniform
probability if the between-module connection type is chosen.

(iii) Vertex connection. In the case of in-module connec-
tion, a new vertex is created if the (h—1)th-level submodule
is at the lowest level and then connected to m existing ver-
tices in this submodule by following the PA rule. Otherwise,
if the (h—1)th level is not the lowest level, substitute /& by
h—1 and let this submodule be the selected module Qj; then,
return to the first step (connection type selection). In the case
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The first level

The second level

FIG. 2. (Color online) The network model with M=2, n=3,
m=my=2, q;=0.9, and growth time 7=30. It is grown up to
N=31 vertices.

of between-module connection, on the other hand, two exist-
ing vertices are selected, respectively, from the submodules
determined in step 2 (module selection) in terms of the PA
rule and then connected each other.

The above procedures can be repeated for a number of
times to emulate network growing processes in the real
world. Figure 2 demonstrates a configuration of our model
with M=2, n=3, m=my=2, q;=0.9, T=30, and grown up to
N=31 where N is the number of total vertices.

As is discussed in Sec. I, in real-world networks, the cre-
ation of connections between lower-level modules is easier
and more frequent than that at higher levels. This fact can be
expressed in our model by the following inequality:

1- qh+1 < qh+l(1 - qh)' (1)
Inequality (1) can be regarded as a constraint on the in-
module connection probabilities ¢, h=1,2,...,M—1. Two

necessary conditions for inequality (1) holding are that V',
q,<qu+1; 1.e., the in-module connection probability
{9142, ...,qy} must be a monotonically increasing sequence
and Vh>1, g,>0.5. These conditions imply that, in order to
preserve a modular and hierarchical structure, the events of
vertex creation in a single module must occur much more
frequently in the network-growing process than the creation
of a connection attached between two existing vertices in
different modules; otherwise, the clusters and hierarchies of
the network will vanish soon.

The dynamical properties of the network model will be
analyzed in the next two sections.

III. THEORETICAL ANALYSIS

In this section we will investigate some mathematical
properties of the proposed model on the basis of the simpli-
fied assumption presented in Sec. II; i.e., except the lowest
level in the model, all the modules at each level are com-
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posed of the same (fixed) number of their lower-level mod-
ules. We would like to investigate the characteristics of the
network model when new vertices and connections are al-
lowed to add into the network randomly. In this situation, the
degree of each vertex and the number of vertices in each
module in the model increase as the network grows, present-
ing a dynamical prospect.

In our model, all the modules at each level have the same
uniform selection probability, and the in-module connection
probability g, h=1,2,...,M—1, satisfies inequality (1). As
a result, the modules at the Ath level can be considered to
have the same size of module degree, denoted by (Ekj)hM,
where k; is the degree of vertex j in a module and M is the
total number of levels in the network. We can easily get the
relationship between the module degree of the Ath level and
that of the (h+1)th level:

(= kj):il =n(Z kj);,M~ (2)

According to the connection generation principle presented
in Sec. II, the vertex degree dynamics in the hth-level
module—i.e., the increasing rate of the connections of a ver-
tex in the selected module at the hth level—denoted by
(ok;/ c?t)hM , satisfies the following recursive equations:

<(9ki>M (ak,.)M+ 2 d—q) k; )
=4 — —q >
ot h+l ot h th (Ek})z/l

(&_ki)M_ 1 mk @
o) S

The first term on the right-hand side of Eq. (3) represents
the increasing rate of the connections within the selected
module of the Ath level, based on the in-module-connection
probability g, and the second term concerns the increasing
rate of the connections between those hth-level modules that
are included in a module of the (A+1)th level, on the basis of
the between-module-connection probability 1-—g¢;,. Equation
(4) implies that the connections in any of the lowest-level
modules obey the PA rule. But from Egs. (2)—(4) one is un-
able to get the module degree dynamics (Jk;/ )}y from the
top-level view, because the total number of connections,
(Eki)%, in the network is unknown. Corresponding to Eq.

(3), however, (Ekj)Zﬂ can also be divided into two parts:
h+l h
(E kj>h+l =Qh(z kj)h+2(1 —qnt, (5)
1
(X k), =2mr, (6)
where ¢ is the network growth time. If we define

a=m, (7)
bl = 2m, (8)
A1 = quap +2(1 - qp), )
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FIG. 3. Plots of the module size distribution
P(S>s) of the model with M=10, n=3, and 8
vertices in each smallest module. The slope of the
solid line is 1.0.
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b1 = qpby+2(1-q;), (10)

then from Egs. (2)—(6), the degree dynamics of the network
can be easily described as

Ik \M ayk;
(_l> =a_M_” (11)

where a,, and b,, can be derived from Egs. (7)-(10). The
result allows us to conclude that the distribution function
Py (k)~k™m—i.e., the power-law distribution, with expo-
nent

)\le +bM/aM. (12)

Because it satisfies 1<by/a) <2, we can find that the ex-
ponent Ay e [2,3] which fits most empirical data in
[4,8-10,26].

The fact that the exponent \;, is between 2 and 3 can be
easily understood. When the number of new connections cre-
ated within the lowest-level modules are far more than those
between different modules—i.e., the in-module-connection
probability g, — 1, for all h=1,2, ... ,M —1—the model will
be close to the BA model and the exponent A\, — 3. Whereas
if at some level—say, the Ath level—most of the new con-
nections are created between modules—i.e., g, — 0—or the
number of levels in the network is very large—i.e.,
M — o—then, \j;— 2.

Since the modules at any level have an identical selection
probability P35, all the modules of this level can be consid-
ered to have the same module size. We define S), and R, as
the module size and the number of modules at the Ath level,
respectively. From the model structure, it can be easily de-
rived that

Spe1 =08y, (13)
1

Ryi1=—Ry. (14)
n

From Eqgs. (13) and (14), we can get
lnSh=—1nRh+a0, (15)

where a is independent of 4. And according to the defini-
tions of S}, and R, we have

P(S;) ~ Ry, (16)

Combining Eq. (15) with Eq. (16), we know that the module
size obeys the power-law distribution

P(S) ~ S (17)
Numerical analysis also shows that P(S>s) almost satisfies
P(S>s) ~s7!, (18)

which is shown in Fig. 3. Such a result is similar to that of
some real-world networks [19,27].

IV. NUMERICAL SIMULATION

The analytic result in Sec. III has been validated by nu-
merical simulation. In the first example, we set M =4, n=3,
¢,=0.7, ¢,=0.8, g3=0.9, m=my=2, and T=7000, and in the
second example, M=5, n=3, ¢;=0.7, ¢,=0.9, ¢3=0.95,
q4=0.995, m=my=2, and T=6000. We present the numerical
data in Fig. 4. It shows that the results of the two examples
satisfy the power-law degree distribution with a different ex-
ponent; the first has the exponent y=2.5 and the second the
exponent y= 2.6, which are very close to the analytic results
from Eq. (12).

We also investigated the clustering function C(k) of the
proposed model with various parameters. Roughly speaking,
C(k) is likely to obey the distribution of k™. In the early
stage of the growing process (i.e., each smallest module has
a relative small number of vertices), B is close to 1, as is
shown in Figs. 5(a) and 5(d). As the network grows, B de-
creases from 1 to 0, shown in Figs. 5(a)-5(c). The reason is
that as the network grows, the connection between modules
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FIG. 4. Plots of the degree distribution P(k):
(a) The first example with M=4, n=3, ¢;=0.7,
¢,=0.8, ¢3=0.9, m=my=2, T=7000, and
N=3562. The slope of the solid line is 2.5. (b)
The second example with M=5, n=3, ¢;=0.7,
4>=0.9, ¢3=0.95, ¢,=0.995, m=my=2, T=6000,
and N=3775. The slope of the solid line is 2.6.

becomes stronger and the connection within the lowest-level
modules is weaker due to the increasing number of vertices.
So the clustering phenomenon in the network is not so clear
as in the early growing stage. The result means that many of
the real-world networks are in their early growing stage be-
cause B is close to 1 for them [18]. The length of the early
stage is mainly determined by the number of levels, M; the
in-module-connection probability g;; and the number of con-
nections, m, added while a vertex is created. The larger the
parameters, the longer the early stage is. So some real-world
networks may have to spend a very long early stage.

V. TREND PREDICTION USING OUR MODEL

Here we will study the growth trends of those real-world
networks by using our network model with corresponding

parameters. We consider a medium size network with M =4,
n=3, q;=0.5, ¢,=0.95, and g3=0.995 and plot in Fig. 6 the
change of the exponents of C(k) of any module at each level
(except the first level, because the modules at the first level
do not have a modular structure) with respect to the increas-
ing number of vertices in the network. In Fig. 6 we find that
as the network grows, lower modules lose their intermodular
structure quickly, and when the growth time 7 is large
enough, the modules (and consequently the hierarchies) of
the network will eventually merge. That is to say, for ex-
ample, one day, in human society the administrative organi-
zations governing villages, cities, provinces, and countries
will vanish as a result of the rapid development of commu-
nication among people. In fact, even at present, we have seen
a phenomenon that the boundaries of different cities in the
developed countries are getting more and more blurry with

FIG. 5. The clustering function C(k) with

2 the parameters m=my=2, ¢;=0.7, ¢,=0.8, and
q3=0.9: (a) M=4, n=3, T=400, and N=240; (b)
M=4, n=3, T=1600, and N=859; (c) M=4,

g n=3, T=3200, and N=1632; (d) M=4, n=5,
(d) T=1600, and N=1049. The slopes of solid lines
are 1.0 in (a) and (d), 0.5 in (b), and O in (c).
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FIG. 6. Plots of the trends of exponents for
modules at each level except the lowest level in a
network with M =4, n=3, ¢;=0.5, ¢,=0.95, and
q3=0.995.
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the development of local and long-distance transportation
systems.

VI. SUMMARY

This paper proposes a hierarchical and modular network
model by adding the growth principle and the PA principle
into the model of Motter et al. The proposed model has
increasing vertices, a fixed number of modules, and a hierar-
chical structure. The vertices of the model form the lowest-
level modules which in turn constitute higher-level modules
hierarchically. The creation of connections between two ver-
tices in a single module or in two different modules of the
same level obeys the PA rule. With theoretical analysis and
numerical simulation, it is shown that the degree distribution,
the module size distribution, and the clustering function of
the model possess a power-law property which is similar to
that in many real-world networks. The model has been used
to predict the growth trends of the real-world networks with
modular and hierarchical structures. By comparing this
model with those real-world networks, an interesting conclu-
sion is found that many real-world networks are in their early

0 1 1 Pan¥ 10 10 FanY FanY 3
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

stages of development, and when growth time is large
enough, the modules and levels of the networks will be ulti-
mately merged.

It is noteworthy that, as the lower modules disappear, the
number of network levels will decrease and the between-
module-connection probability of original higher-level mod-
ules will increase correspondingly. This can be considered as
an interim process between two relatively stable stage of the
network growing, i.e., the initial stage at which there is a
very clear modular and hierarchical structure and the ulti-
mate stage at which all the infrastructures and superstruc-
tures vanish. Unfortunately, our model is unable to charac-
terize this interim period. This is an interesting topic about
the development of complex networks, and we will study it
in our subsequent work [28].
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